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1. THEORETICAL FRAMEWORKS FOR TESTING
. RELATIVISTIC GRAVITY

An aétrdndmer detects mysterious pulses in the li_ght from a star
at the center of the Crab Nebula, and theorists speculate that their source
is a rotating neutron star (a "pulsar")., Massive aluminum cylinders in
Ilinois and Mai‘yl_land are suddenly and simultaneously set into vibration,
and theorists suggest that a gravitational wave has Ijust paAssed through
the solar sy.stem. Radib astronomers discover that space fs filled with
black-body radiation with a té’mper_ature of about 3° Kelvin, and theorists
say that it is a by-product of the initial *big bang" of the Universe. X;ray
. astronomers discover aperiqdi; fluctuations in the X-ray e’rhiséidp from
C'ygnus-'Xl; optical astronon;érs discover that Cygnué-Xl ié associated
with a.single-line spectrovscopic ‘binai'y star;.. and from this evidence
theorists speéuiate that the X-rays come from a Black Hole in orbit
around v_a x.1’or'ma1 star. - - | '

But w‘hevn_ the theorists sit down}aﬁd‘begin to construct detailed
models forlthese phenomena, they suddenly pull up short. Ail ‘thesé
phenomen.ar,. they notice, involve "relativistic" gravitation in a vefy
cruciai way. Newton's theory of gravitation is.cert.ainly inadequate to

.describe these phenoinena quantitatively; and two of them .(bla,ck holes
and gravité.tional waveé) it cannot déscribe éven qualitatively. Experi-
mental tests in the solar system up to 196_0 seem to cénﬂrm Einstein's
felativiét,i_c theory of gravity,_ so perhaps that is the theory fo uée in
model-building. But those experiments were of such low accuracy (only
20 per cent precision in most cases), that they also seem to confirm

several alterhatives: Whitehead's Theory, the Belinfante—’Swihart Theory,



Dic.ke-Brans—Jordan Theory, Yilmaz's Theory, Papapetrou's Theory,
voo ».' Theorists are hamstrung. Unless they have some strong r»eason’
for believing one of these theories over the others, they ,éan have little
confidence in the models they build to explain asfrophysical p'henbmena.
Fortunatély, the same advances in laboratory and space technology

that made possible the discovery of these a_étrophysi_cal phenorhena, wili
aiso, in the coming decade, give the ‘theoretical astrophjrs_icist strohger |
eXpezjimental reasbné for Bélieving 6n1y'§_rig théory of gravitatioﬁ. v T.he
technoiogy of the 60's has handed us a set of high-precision to.ols for. ,
testing 'gravifationél theoriés i1_1 the 70's; radar ranging to plam’ets and
satellites, with accuracies better‘than 15 meters; laser ranging to the
Moon, accurate to better than 30 centimeters; long baselline‘_inter—»
ferometry, capable of measuring aﬁgles down to 3X 10"% seconds of
arc; ;tomic and molecular clocks, stable to one part in 1014 over periods
as long as a year; g_ray'i'meters_', able to megsure changes' in acceleration
on the Earth as small as 10710 g; and. many others, |

| ‘These developments -= _diééoveriés in astro‘nomy'» and astro-
physics , and ad\.rancing.technology -- have made the s‘ystematic, high-
‘precision testing of :g‘ra.vi»tation‘theories an important and exciting task
for the 70's. | |

Although there are many new experimental 'pqssibil_'i‘ties s the cost’

of carrying out mést in terms of manpower and money 1svvery- high.-
(The megabuck is a useful unit of measure Vfor' some of the tests.) For
this reasc.)_n,v it is crucial that we have as good a _théore‘tic.a..l fr_amewbrk
as possible for comparing the relative values of the \}arious experiments

and for proposing new ones which might have'been overlooked. -



.The 'm;ost simple-minded theoretical framework would be ‘a direct
comparison of general_relativity with Newtonian theory. Indeed, it was
just such a comparison which motivated Einstein's original three tests --
the gra\}itational redshift,._ the deflection of light, and the perihelion
shift of Mercury.- One rnight think that we should merely continue to
measure these and other non- Newtonian, general - relativistic effects
to higher and higher accuracy;. and only if a discrepancy between experi-
ment and theory is found, should we begin to consider'other theories.

But because of the lack of high precision data favoring general
relativity over any other theory, and because of the large (and growing)
‘number of competing theories, there is a great need for ‘a theoretical
frax_nework which is powerful enough that it can be used to design and
assess experim'e_ntal'tests in detail, yet is gene_ral enough that it is not
biased in favor of general relativity. It should also provide a machinery
for analysing all the theories of gravity which have been invented as
alternatives to Einstein in the past 70 years, for classifying them, for
elucidating their similarities and differences, and finally for comparing
their predictions with the results of solar-system experiments.' We
would like to see experiment force us, with very very. few a priori assump-
tions about the nature of grairity, toward gen‘eral. reiativity or some other
theory. | ‘

A leading exponent. of this viewpoint is _Robert H. .Dickef It has:
led him and others to perform several high-precision null experiments
(Eotvos-Dicke-Braginsky experiment; Hughes-Drever experiment; ether-
drift experiments) which‘greatly vstrength.en our faith in the foundations

of general relativity. (See Dicke 1964; also Sect. 2 and 3 below.). Without



this viewpoint, some of the null ekﬁerimeﬁts might not have been Per_—
formed,. and we would certainly not understand so well their significance.

Dicke»himself.h‘as suggested one type of theoretical framework
for comparing various theories of gravity and analysing the gignificance
of various exp'eriments., His framework (see Sect. 2 below) is palftieularly _
powerful for d.iscussing the null experiments ; fordelinea_.ting the qualita-
tive nature of gravity, and for devising new covariant theories of gr.avit}.r.i

The Dicke framework assumes almost nothing about the nature of
gravity. It_>helps one to design and discuss experiments which test, at a
very fundamental level, the nature of spacetime and gravity. Within it
one 'asks such qo.est_ions as: Do all bodi.es respond to gravity with the
same acceleration? Is space 1ocally; isotropic in its intrinsic properties?
What types of fields, if any, are associated with graﬂty ——_-scala;' fields,
vector fields, tensor fields, a.ff_ine' fields, ... ?

‘ Cruci_a.l among these experiments is the Eotvos ‘experiment (as
imoroved bericke’arid Braginsky and thei.r collabor'at‘ors) which verifies
to hig‘l accuracy the composition- independence of acceleration of labora-
tory—sized bodies ("Unlversa.lity of Free Fall"). By analysing this experi-
vment within the Dicke framework, one arrives at a %mmber of "fair-
confidence" conclusions about the nature of gravity. These are (i) that
gravlty is associated at least in part, with a "metric”; (11) that freely
falling test bodies move along geodesms of thls metric; and (iii) that in
loeal freely falling frames of this metric, all the non-gravitational laws
of physics take on their special-relativistic forms. C_urr_enf research is
groping toward a moxjelconvincing proof of this "fair-conﬁdence" conclu-

sion (cf. Sect. 3). Theories of gravity which'Satisfy conditions (i), (ii)



and (iii) aré called "métric" theorvies.

A second theoretical frarﬁework starts where fhe Dicke frame-
work leaves off, by taking the postﬁlatés (1), (ii) and (1i1) of metric
theories as its foundation. This framework is the Parametrized Post-
Neyvtonia‘n (PPN) formalism of Eddington (1922), Robertson (1962), and
Schiff (1967), as impro.véd and extebnded by Schiff (1960a), Baierlein
(1967), Nordtvedt (1968b), Will (1971a) and Will and Nordtvedt (1972). -

';I‘he PPN framework takes the slow-m.otion, pbsthewtonian
limit of all conceivable metric theorieé and characterizes that limit by
a set of ~9 feal-valued parameters (see Sect. 4 for defails). Each |
mefric théory of gravity is characterized by 4a set of particular values
for these PPN paramefvers. 'i‘hg task of sola_r-s'ys’tefn gravity experi-
ments in the coming decade can be regarded as onev of meésuring the
values of these PPN parameters aﬁd thereby delineating, hopefully,
'whig:h theory of gravity is correct. v '

In the following two sections, we will discuss the chke frame-
work, and the foundation whici'x it and the Eotvos= Dicke-Braginsky experi-
ment lay for the PPN formalism. The remaining four sections deal with
the PPN formalism in detail. Sect. 4 sets up the formalism and analyses
the structuré of the PPN metric; Sect. 5 reviews metric theories of gravity
and their post-—Newtoﬁian_limits; Sect. 6 derives PPN equations of motion;
and Sect. 7 analyses specific solar-systerﬁ experiments in detall, ‘and
uses the curfent status of expérimen’c fo put lirﬁits on the values.o_f the

PPN parameters, thereby ruling out several theories of gravity.



2. THE DICKE FRAMEWORK

2°1. Statement of the Framework

The Dicke framework for analgrzing experimental testo of gravity
was expounded in Appehdix 4 of Dicke's (19645 Les Houches lectures.
Here we shall preeent a slightly generalized version of Dicke's frame-
work, and we shall couch it in slightly different langu’age.i

Dicke .beg_insvwitl.l two statements about the type of mathematical
formaiism to be used in discdssing gravity. These statements have little

physical _content;i they serve primarily to deline,a'tte.the vantage potht

1See, however, Trautman's (1965, p. 101) remarks about the physical

significance of assuming spacetime to be a differentiable manifold.

from which gravity will be viewed. They say:

Statement (i): Spacetime will be fega'rded as a 4-dimensional |

manifold, with each point of the manifold corresponding to a physical
" event. The manifold need not a priori have either a metric or an affine
connection.

Statement (i1): The theory of gravity will be expressed in a form

that is independent of the particular coordina.tes‘ used; i.e., the equations
of gravity and the matia.ematical entities in them will be put into covariant
form. |

Notice that even if there is some physically preferred coordinate
system in spacetime the theory can still be put into covariant form.,
For example, one can introduce four scalar ftelds, whose'numerical _

 values are equal to the values of the preferred coordinates:



alg) = x(@), - Bla) =yl@), Y@ =za), &g =t
(2.1) o '

q a point in spacetime; ('x,y,z,t)-prefen;ed coordinates;

and one can then regard these fields as associated with gravity.

The Newtonian theéry o;lfk gi'a.vity is an example of a theory tiaat
is not no.r_fnally expressed.vin covariant language; the Newtonian equations
- VZU = - 4nGp, F = mYU -- are valid only in a pva.rticular:‘class of
coordinate frames. However, as Cartan has shown [ see Tfautman (1965)
for a review] s | Newtonian theory can be expressed in an a.l-ternatﬁe co-
variant form involving a nonmetrical affine connection.

"Stratified Theories” of_gra{rify (cf. Secﬁt. 5) are also examples
of theories which have phy,sicallir preferred éoordinate systems, bﬁt
which can still be put into covariaﬁt férm. |

Having 1a_.i& down his mathema.ticél viewpoint (statements i and ii
aboye), Dicke then_ hn.posves two cqﬁstra.ints, whic_h he requires of all
acceﬁtabl"e thep‘ries of gravity. They are:

Constraint 1: Gravity must be associated with one or more fields

of tensorial character (i.e., scalars, vectors, and tensors of various

ranks). |

Constraint 2: The dynamical equations which govern gravity must
be derivable fr.om an in\vrariant action principle. |
| These constraints have deep significance;théy strongly confine
the theovi'y‘r. | For this feasoh',_we should be willing fo accept‘ them only
if fhey are f_uﬁdam_ental to our subsequent ax.'gu'r.nents.. F§r most ap_plica-

tions of the Dicke framework they ia_re not need‘ejd at‘all. ‘Therefore, we

shall usually not assume them. If we ever need and use them, we shall



state so explicitly..
There is one final item in the Dicke framework -- an item of
great significance

Guiding prin01p1e° Ockham's (1495) razor -- Nature likes things

as simple ‘as possible (pluralitas non est ponenda sine ne'cessitate).

This guiding principleis used, of course, to tell us what kinds
of .theories of gravity are the most. likely to be correct -- and, there- |
fore what kinds of experiments are the most important ones to perform.

Notice that by telling us to apply Ockham's razor within a covariant
mathematical framework, Dicke builds a very particular bias into his
formalism. Only those theories which look simple when expressed in
covariant form are deemed promising. By this criterion, general
re.lativity'is very promising -- peri'laps the most promising theory of alll
H'oweveri, Newtonian theory is not. U In its covariant form (T.rautman-
1965), by contraSt _with'its conventional form, Newtonian theory is_ex-.
ceed.ingly complicated. A physicist working in tne Dicke fra,rnework'would
never be so pathological as to dream up a theory like that of Newton!

Keeplng this bias in mind, we shall proceed to discuss experiments

within the Dicke framework.

2.’,2. The Fields Associated with Graviﬂg

| The Dicke framework is particularly useful for designing and -
interpreting experiments which ask what types of fields are associated
with gravity. When Dicke himself uses it for this purpose, he imposes
coristlraint 1 (above) -- _i.e. , he considers only scalar, vector, and tensor

flelds. To be on the safe side however, we shall go all the way and admit



any field that takes on a covariant form; i.e., we shall abandon con-
straint 1.

(1) Second- Rank Tensor Fleld

First let us consider tensor fields of rank.. (g). There is very
étrong experimental evidence that at least one such field exists in the
Universe: a symmetric field xpij whicil, far from all gravité.f_:ing bodies,
reduces to the Minkowgkii metric nij" Far frcnamA gravitating bodie's.,
this nij has orthonormal tetrads which are related by Lorentz trapsfor-
mationé , and determines the ticking rates of a.tomic and nuclear clocks
and _thé lengths of labofatory rods. ) |

The evidence for sﬁch a field comes ,largely_frdm elementary
particle physics. Sinée thése experiments are pe‘rformed at high |
energies and velocities, and ovei- véry srﬂall reg.i‘ons of space and time,
the effects of gravity on t'heir oAu_f..come are negligible. T_hﬁs we may

treat such experiments as if they were being performed far from all

_ graiiitating matter. The evidence provided By these experirhents is of

two types: . First, experiments which measure space and time intervals
directly -- e,g., measurements of the time dilation of the decay rates
of unstable particles,-z. Second, experiments which reveal the fundamental

role played by the Lorentz group in particle physicé ,3 including every-day,

?For a 2 per cent test of time dilation with muons of (1 - VZ)—1/2~ 12 in

.a st&rage ring, see Fé.rley, Baliley, Brbwn, Giesch, Jostlein, van der Meer,
Picasso, ana Taﬁnenbaum (1966) For eariier tirﬁe dli’ation- expefiments
see Frisch and Smith (1963), Durbin, Loar, and Havens (1952), Rossi
and Hall (1941), Ives and Stilwell (1938, 1941), -For an experlment

which verifies, to one part in 10 » that the speed of light (y rays.) is



iﬁdependent of the velocity of its source (decaying 7°) for source
velocities v > 0,99975c, see Alv'a'.gef, Farley, Kjellman, and Wallin
(1964).
3

See I_icht_:enberg (1965) for a discussion of Lorentz invariance, spin

‘and statistics, the TCP theorem, and relevant experiménts.’

high-precision verifications of four-momentum conservation vand of.:vthe
relativ‘is-tic laws of kinemat_ics.l Tq cast out the Minkowskii metric nijb
entirely would destroy the theoretical backing of such experiments.

Let us noticé what pa{rticle-physics experiments do and.do not
tell us about the tensor .ﬁeld, Lpij: First, they do not guarantee that
there éxist global Lorentz frames -- i.e., coordinate aystems exteﬁding

throughout all of spacetime, in which4

-4Here and throughout most of these lectures we use units in which the

speed of light is runity (see Sect. 3 for a »discussioﬁ of units and notation).

(2.2) 4y = Minkowskii metric ;= diag (1, -1, -1, -1) .
Nor do they demand that at each'event g there exist local frames, re-
1ated‘ by Lorentz transformations, in which the laws of elementary

particle physics'take on their speclal relativity form. They only demand

that, in the limit as gravity is "turned off" (either by Working far from

gravitating bodies or by performing experiments where the effects of

gravity can be ignored), the non-gr_avitaﬁonal laws of physics reduce to

the laws of special relativity.

Second, elementary particle experiments do tell us that the times

10



measured by atomic clocks in the limit as gravity is turned off depend
only on‘velocity;' not upon acceler.ation. The measured squared interval
is ds2 =My cixa dxb, independently of acceleration, Equivalently but
more phys.ically, the time interval measured by a clock moving with

velocity v% relative to a coordinate frame in the absence of gravity is

(2.3) ds = (n_, dx* ORI (V},{)Z- W2 - (v*)% 1/2 4,

» ihdependently.of the clock's acceleration dzxa/dtz. If this were not so,
then particles moving in circular orbits in strong magnetic fields would '
exhibit different decay rates than freely moving particles, which they do

not (Farley et al. 196());5 and °'Fe nuclel would show acceleration

5The experirnént of Farley et al. is a 2 per cent check of acc’elerat_iori—
independénce of the muon decay rate for énergies E/m =(1- v2 -1/2 . 12
a,ﬁd for accelerations, as meésured in the muon rest frame, of
a=5X 1020 cm/séc2 = 0.6 cm. Note that, at accelerations a fé.ctdr

33 2

j0i3 iarger than this (a ~ 10°° cm/sec” ~ 1012/cm), in one light

travel time across the muon it- accelerates up to nearAthe speed of
light, if it was initially at 1"est° Such large _accélerati'ons will probably
affect the deca.ir rates -- not because of ariy breakdown in relativity
theofy, but because the decay cannot be analysed within a .sj.ngl_e ;b_

moving Lorentz frame. The muon ceases to be a valid special relati-

\}1st1c clock. See Ageno and Amaldi (1966) and_Baﬂéy and Picasso (1970).

dependence in the ‘frequency of their Mossbauer transitions, which ihey
do not (Sherwin 1960).,

'We shall henceforth agsume the existence of t_he symmetric. -

11



tensor field quJ. .

(ii) More than One Second-Rank Tensor

The Hughes- -Drever experiments rule out, with very high precision,
the existence of more than one second-rank tensor field, both coupling |
directly to matter, (See PP. 14-22 of Dicke (1964) for discussion.)

They do not rule out, however, additional second-rank tensor fields |
which couple only to gravity or to matter's gravitational self-energy, |
because the effects of self-gravity in those experiments were negligible.
Experiments inhichin_azbe used to rule out such fields are discussed in

Sect. 7.

(1i1) Vector Field

Various ether- drift experiments make it unlikely that a vector
field coupling directly to matter is pres‘ent_. [See PP. 22-25 of Dicke
(i964); also Turner and Hill (1964); Champeney, Isaak, and .Khan (1963).]
Again; vector field's which couple only to ma_tt_er's gravitational energy,

can only be ruled out by experiments -which involve gravity (Sect. 7).

(iv) Scalar Field

No experiment performed thus far has been able to rule out or
reveal the presence of a scalar field. However, future studies of the
polarization properties of cosmic gravitational waves might reveal the
scalar field, if it is present. The deformations produced in a disk
placed perpendicular to the incoming waves are area- preserving (quad-
rupolar) if the waves are purely tensor in nature; but they can be area-
changing (monopolar) if the waves have a scalar component. Other
rvays‘of experimentally delineating a scalar field are discussed by Dicke
(1964). -

12



(v) Scalar, Vector, and Tensor Densities

~When Dicke (1964) writes down his constraint 1 (cf. §II.a above),

he explicitly states that he will not éonsider theoriés in which boson

fields such.as gravivty..'transform as tensor densities; he admits only
tensorial fransformation laws. However-, if we conclude that a metric
field is present, such a constraint becomes superfluous. - Ansr scalar,
vector, or tensor density can be expressed in terms" of the determinant

of the metric ‘and a corresponding pure scalar, vector, or tensor.

Hence, With a metric present we can ignore the densities. Without a metric
we must search for expei‘iments to rule out tensor-density fields.

So far. we have éaid nothing about the e:ds,tence_ of a metrié field
in spacetime: none of the experiments discussed above offers any |
evidence for its existénce. For such evidence, we must turn to the
Eotvos experiment (and possibly to the gravitational redshift experiment),

and to a conjécture which originated with Leonard Schiff.

13



3. SIGNIFICANCE OF THE EOTVOS-DICKE-BRAGINSKY EXPERIMENT

3°1. Introduction

Although Einstem considered the gravitational redshift one of the
most important of the predictions of general rela_tivity, it was not until
1965 that a truly accurate confirmation of the redshift vcould be made.
That year, Pound and Snider (1965), using an improved version of the
experiment performed five. Yeé.rs earlier by Pound_and.Re‘bkn, confirmed
the gfavitatio_nal redshift of p'ho,tons climbing up the Harvard tower
through the Earth’s gravitational field. Their accuracy of one per cent
was made possible by the use of the M.o.ssbauer effect (recoilless emission
and ab.sorption of photons). However, inthe intervening years, the inter-
pretation of the redshift experiment had changed.

The work of Schiff (1960b) and Dicke“l(i 964) suggested that the
redshift expetciment_ was not .a strong test of generai relativity at all.

The gravitational redshift, they claimed, could be calculated by appealing
to (i) conser{ration of energy, (ii) elementary quantum theory, and

(iii) the Eotvos experiment, i.e. the measurement of the compos1tion—
independence of gravitational acceleration for 1a,boratory sized bodies.
This univera.lity of gravitational acceleration was first verified by

-Baron Roland Ve Eotvos (Eotvos, Peka.r and- Fekete 1922) to one part in
109 precision, and improved by Roll, Krotkov, and Dicke (1964) (one
part in 1011')_ and more recently by Braginsky and Panov (197V1) (onepart
in 101'2)'. Leonard Sohiff was working on what he felt‘wo'uld_be a more |
convineing "sroof" of this point of view at the time of his tragic death in
January 1971. | | |

A second point of view, spelled out by Schild (1962) and others

14



was that the gravitational redshift, while not a strolng'test of general
relativity itself, does prove that space and time , as rx;eaeured by rods
and atomic clocks, has to be curved by the presence of gi-atritating
masses. .

A third point of view has emerged from recent res.ea.r_ch'(Lee,
Lightman and Thorne 1972). This interpretation is in .seme sense an

“amalgamation of the other two, and is outlined in the following subsections.

3°2. Completeness, Self-Consistency and Agreement with Special
Relativistic Physics | '

Any theory of gravity which is to be taken seriously at all must
satisfy the following three constraints.

(i) It must be complete, that is it must be capable.of anaiysing

from "first principles" the outcome of every experiment of interest. It
is not enough for the‘vtheory to postulate that bodies made of different
rnateria.l.f‘all with the 'sfarne acceleretion. The theory must mesh with and
incorporate a condplete set of electrvqm.ag'netic and quantum' mechanical
laws, which can be used to calculate the detailed behaviof of atoms in
gravitationel fields. | | |

(i1) ’v It must be self-consistent. A gravitation theory is consistent

1f its prediction for the outcome of every experiment is uniqu.e . e. if,
"when one calculates the prediction by two different methods , one always
gets the same result. |

(111) In the limit as gravity is "turned off", the non- gravitational

laws of physics must reduce to the laws of special relativity, We call a

theory with this property a "relativistic" theory. Elementary particle
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experiments convince us that a theory of gravity must be "relativistic "
to be viable. | |

Table 3.1 contains a partial list of theories of gre.vity which
. violate some of these constraints, and are thus non-viabl_e. (See |

Thorne, Will and Ni [ 1971] for further discussion.)

3°3. Schiff's Conjecture

The Eotvos-Dicke-Braginsky (EDB) experiments verify, to high
precision, the composition-independence of the gravitational acceleration
of laboratory bodies. This can be restated as the Principle of the

Universality of Free Fall (UFF) which states that "if an uncharged test

body is placed at an initial event insPacetime and is. given-an initial

velocity there then its subsequent world line will be indepe.ndent of its

internal structure and composition" (see Misner, Thorne and Wheeler

[1972] for detailed definitions and discussion). The EDB experlments_
are direct tests of UFF, | '

Dicke's (19‘64-) "Weak Equivalence Principle" and Bondl's (1957)
"equality of passive and inertial mass" are equivalent to UFF.

Dicke (1960) and Schiff (1959, 1960b) have discussed the theoretical
significance of the EDB experiments. Lee, Lightman, and Thorne (1972)
have used their ideas as the founda.tion of a viewpoint for analysing the
EDB experiment, a viewpoint summarized by "Schiff's Conjecture":

Any complete and self-consistent gravitation theory which embodies the

Universality of Free Fall must also unavoidably embody the Einstein

Equivalenc’e.Principle, which states that all the non- gravitationé.l laws

of physics are the same in every local, freely falling frame. By "local
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freely falling frame" we mean a reference frame which falls along one
of the universal tesf-body world lines, and which is small enough fhat
one can ignore inhomogeneities in the 'grav.itationalﬁeldsbi.

A useful theorem which can be used to extend Schiff's conjeéture

is the following: A {complete and self-consistent) gra\}itation theory is

a metric theory if and only if it is relativistic and embodies the Einstein

'Equivalence Principle. By metric theory of gravity we mean any theory

which (i) endows spacetime with a metrié », (i1} chooses geodesics of the
metric as its universal test-body trajectories, and (ii1) chooses the
special-relativity laws of physics ‘as the laws to be satisfied in its freely

falling frames (see Misner, Thorne and Wheeler [ 1972] for discus sion)6.

6Thi.s definition of "metric theorx"' is more restrictive than the one used

by Thorne and Wi_.ll (1971) and by Will (19717a).

This theorem is a straigh’.cfdr'ward. conseq'uencé of the definitions of
"relativistic" and "metric" theories and of the Einstein Equivalence
Principle. |

Thus, if the E.o.tv.o's.eDicke—Bragin_sky experiments have been

carried out to 'sﬁfficiently high precision (verification of UFF) , and if

Schiff's conjecture is correct, then in order to agree with the EDB |

experiments and to be relativigtic, a theory of gravity must be a metric

theorz.

The EDB experiments therefore become a powerful tool for dis-
tinguishing metric theories from non-metric theories, and for rliling

out the latter.
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3°4, Proofs of Schiff's Conjecture

ILeonard Schiff's interest in ba proof of the conjecture that the
Universality of Free Fall implies the Einstein Equivalence Prin'ciple
was rekindled in the fall of 1970 during a conference on Aexperimenta.lv

tests of gravitation theories held at the California Institute of Technology7,

_7Kip' S. Thorne, priva.te communication.

and he set to work on a proof, using theéophisticated quantum mechanical
techniques he had used in earlier discussions of UFF (Schiff 1.959_, 1960Db).
Unfortunately; his untimely death in January 1 971 cut. short the analysis.

- Lee, Lightman and Thorne (1972) have made preliminary steps
toward a proof of the conjecture. Centr_al to their discussion is a special

case of Schiff's_ _Conjecture:- Every relativistic Lagrangian-based theory

of gravity (cornplete and self—consistent) which embodies AUFFVis neces-

sarily a metric theory. They are tacking this specialized conjecture from
two directions: | | |

(1) a direct proof, using general concepts in the '-'theor_y of |
La.gr_a.ngia.n-based theories"; |

(ii) an indirect proof, by demonstrating the absence of a counter-
example: a Lagra.ngian-based non-metric theory whi_chl embodies UFF,
i.e. agrees with the Eotvos—Dicke—Braginsky experiment to infinite
precision. Several Lagrangia.n ba.sed, seemingly non-metric theories
are known, one of the strongest contenders is a theory due to Belinfante
and Swihart (1957a. b c) But calculations by Lee and Lightma.n (1972)
suggest tha.t the Belinfante-Swihart theory violates the Eotvos Dicke-

Braginsky experiment, although probably at a level higher than the
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current experimental'lirnit. Their results also shovv that, at least to the
order (in a power series expansion in the .Belinfante-Swihart gravitational
field) to which the theory agrees with the EDB experiment, it can be
rewritten as a metric theory consistently to that same order.'-

| While these results are still a long way from ruling out all non—.
metric theories of gravity, they '.strengthen our conviction that the
Eotvos Dicke-Braginsky experiments and the Universality of Free Fall

form a powerful tool for sifting through metric and non-metric theories.

3*5, Significance of the Gravitational Redshift Experiment

The gravitationai redshift is a direct consequence of the Einstein
Equivalence Principle and of the principle of "relativistic" gravity (vvhich
together produce a .metri‘c theorv of gravity [ see Subsect. 3°3]), i.e. |
it can be derived using_the standard Yelevator argument” first used by
Einstein (see, for example, Schiff 1960h), or d_irectlv from the postulates
of rnetric. g.ravitation theories. If the Schiff conjecture is correct, then
the redshift becomes a direct consequence of the Universality of Free
Fall or the Weak Equivalence Principle. For this reason, many authors
have viewed the redshift experiment as a weak test of gravitation theories
(Dicke 1964, Schiff 1960b). |

However, one should be more generous toward the redshift experi-
ment, because in the absence of a rigorous proof of the Schiff con_]ecture ’
it still provides a useful test of gravitation theories (albeit under restricted
circurnstances). This latter point of view has been spelled out by Schild
(1962) and bv Thorne and Will (1971). Their viewpoint can be summarized

as follows: -
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We first make a restrictive agsumption about the nature of gravity
(an aséumption less restrictive howéver, thé.n as sumiﬁg ."relativistic"
gravity ‘plus the Einsfein Equivalence Principle). We assﬁme that
grévitation ig relatiyistic , and that thefe exist local framés in which
atomic clocks measure proper time in ‘the spécial relativistic manner

(cf. eq. I 2.3] ). We assume nothing however, abouf the mbtibn of these
frames, which we denote "local Lorentz frames”.

The redshift experiment of highest precision is that of Pound and

Rebka (1960), as improved by Pound and Sniider.(1965)’. It reveals a
redshift of z=AN/\= (gh/cz)(ii 0.01) for photoﬂs climbing up through -
a height h in the Earth's 1oca11y homogeneous gravitational field --if
the emitter and receiver are at rest relaﬂv’e to the Earth's surfacé.

Here g is the acceleration of test bodies at the surface of the Earth.
This tells us that the local Lorentz _fra:riés accelerate downward with
the same acceleration, g, as acts on a free particle (td_withi_n 1 p’vér cent
precisién). To arrive at this c.onclusi:on from thé.expériment, we argue
as follows: | ‘

| We wish our argumént to be as independent of fhe special
relativistic laws of physics as poss.ible. ’i‘he inyi aspects of s‘pecial .

: i'elativity that we shall use are (i) the relationship between the Mi_nkowékii
metric of the local Lofentz frames and the ticking rates of atomic clocks;
and (ii) the conservation of wave fronts in electromagnetic waves. Let
us assume (fai_sely) thatthe local Lorentz frames were unacce_leréfed
relative to the walls of the tower used in the Pound-Rebka experiment.
We can theﬁperform a calculation in that particular Lorentz frame which

was attached to the walls of the tower and was large enough to cover the
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éntire tower. The static nature of .tvhe AemAitter, receiver, gravitational
field, and Lorentz coordinate system guaranteed that','although the
spacetime trajectories of the wave crests might have been bent by gravity,
they were certainly the same _frorh one crest to another, except for a
tranélafion AtLr in the Lc_)re,ntz'time coordinate, Hence, the coordinate
rates i/AtL of emission and reception of wave crests were the _v.sa.me.
But by aséumption these Lorentz coordinate rates were also the. proper
rates measured by the atomic clocks (57Fe nuclei) of the experiment.
H'en‘c.e, theory predicts ::zero réciéhift, in coﬁtradicfidn with experiment,
Our assumption that the local Lorentz frames were unaccelerated must
be w£ongl |

' We must assume, then, that the local Lorentz frames were
accele'rated. relative to the _tov)er. Since gravity pointed Qgrtically and
all horizontal directions were equivalent in all respec’;s , the acceleration
(Sf the Lorentz frames must have been -vértical. Denof:e by a its value
in the déwnward direction. As in our previo'us argument, in a static
coordinate system (i.e., in coordinates at rest relative to emitvter,
receiver, and Earfch'é sta'.tic gravifational field) the wé.ve-crest tra-
jectories must have been identical, except for a t;me trva.nslatior.x Ats
from one crest to the nexf. But in this case the static coordinates_weré
" not Lorentz coordinates. Rather, they were acceleré.té.'d upx?vard (in the
+ 2z direction) relative to the Lorentz frames (here c  is the speed" of

light):

ct; = (zs + cz/a.) sinh (ai;s'/c) ,

(3,1) ‘ zy (zS + cz/a) co_sh (ats/c) y

X T %g 2 ‘ Yi.=ys°
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[ For an elementary derivation and discussion of this transformation
law between Lorentz frames and accelerated frameé-, see, e,g., Misner,
Thorne, and Wheeler (1972).] Hence, proper time as measured by

atomic cl_ocks was given by

_ 2 2 2 2 2
| o dr” = c. dtL - de -dy; " - dz;
(302) : .
‘ ' S 2,2 2 2 2 2 2
=(1 + azs/c )" et dt " - dxs - dy " - dz_".

Since, as before, the wave-crest emission and reception rates were

the same (1/Ats) when measured in static coordinate time, they were

related by
v (1 +az /cz)At
AN _ em’ _ 8 rec’/ s : 2
~ T v -1= — 2 —1=a(zsrec"zsem)/c'
‘ rec (1 taz_ em/c )At '
(3.3) B . °
= an/c?,

when measured in the proper time of the atomic clocks. But thé éxp_eri-
mentally measured rgdshift was gh/c2 to a precision of one per cent.

'Hence, the downward acceleration of the Lorentz frames was the same

as that of a free particle, g = 980'cm/sec2, to a pvre(.:ision of one pgr cent.
_ In_ sumnﬁary., the redshift experiments reveal that, to a precision

of ~ 0.0t GI\I/I/R2 whére M and R are the mass and radius of the

Earth, the local I_o_ren‘tz. frames at the Earth's surface ‘é.re unacceleratedv
relative_b to freely falling test bodies; Equivalently, test bodies move

along straight lines in the local Loren’;z fram'es. If we 1dentify as the
metric the unique second rank'tenso_r field g which takes the Minkowskii

form in every freely falling frame, then elementary differential geometry
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tells us that the te st-body trajectories are geodesics of t.’:he'metric g .
Thus, in the absence of a proof of the Schiff Conjecture, gravi-
tational fed_s_hift e#perir'nerits ma.y_stiil be a valuable tool in testing the
validity of metric theories of gravity. For this reason, it is vei'y im-
portant fhaf the precision of the redshift experiments be improved as
much ns possible -- both on Earth (homogeneous field) and elsewhere in
the solar system (inhomogeneous fields). Of particular interest will
be experimenfs 1n which atomic clocks are ﬂown in spacecraft and
rockets (Kleppner, Veseot and Rameey 1970, Vessot and Levine 1971,

Vessot 1971).

3°6. Gravitation ae a Geometric Phenomenon

These analyses of .Schiff's Conjecture and of tne gravitafional
redshift have instilled in some theorists a very strong conviction that
oniy metric theor‘ies of gravity_have a‘hope of being completely viable,
~ Since the remaining sections deal solely' with metrie theories of gfavity,
v&e wiil briefly review here some of the key formulas of differential
geometry; and will set down once and fo;; all the conventions and notation
to be used.  We discuss one by one the thee "postulates™ of metric

theories of gravity:

i. Spacetime' is a four-dimensional manifold endowed.withv a’

metric g . The metric is a (g) tensor, with components gij in a
particular xi coordinate system. This metric endows spacetime with
a "Riemannian affinity" rj:jk (not a tensor) defined, in a given coordinate

system by
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i _ 1 im
=738 (g - g;

Jk,m) T

mj,k | 8mk,j
(3.4)

I'k.jk = ({n ‘/-g)?j .

[ Notation: g is the determinant of gi_]’ comma denotes partial derivatlve ]
The Riemannian affinity is used to define the covariant derivative

[ Notation: semicolon denotes covariant derivative]:

i i i k
A .= A + \ Yy
3J 2 J PJkA
(3. 5)
ST rkijAk -
where

-Under a transformation of coordinates of the form
o 1 g, 03
(3.7) ehT = ey,

the metric transforms according to the standard tensorial transformation

law: .
k
A T 9% 8x
(3.8) (g..) .
T 5T (ox )Jr Bt

If the transformation is infinitesimal, i.e.

(3.9) (T = b+ gled)

then gij' transforms to first order in §i according- to
‘ o T 2 e o

Covariant derivatives of tensors transform as tensors, while partial
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derivatives do not. Thus far there is no physical content, just mathe-

matics.

2. Test-body trajectories are.geo‘desics of the metric. A curve
is a geodesic of the metric if there exists a parameter \ which

* parametrizes the curve xi(,)\')' such that the curve satisfies

2 i i .k
d"x i dx) dx _
(3.11) oz TTxma A =0 -

Here N\ is called an affine parameter. Eqﬁation (3. “), can also b_e

derived by minimizing the invariant quantity
(3.12) do = (g3 axt ah) /2,

along the trajectory, i.e. by using the standard variational calculation:

| | .

T 2 i 1/2 -
= = dx dxj
(3.13) 0-55.4"#-55;1 By ax ) 4 -

'Equation (3.13) ylelds equation (3.14) only if do = d\# 0.
In local freely falling frames, coordinates can always be chosen

so that at a given event q,
i ] n )

We still lack a connection between physical objects and the metric.
This connection is given by Postulate 3.

3, In local freely falling frames, the non-gravitational laws of

physics take on their special relativistic forms., These special reiativity
laws include the following:

a. Physical rods and atomic clocks measure sp_acetime intervals
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given by
y(3.15;) o dszznij dxi dxj .

b. Maxwell's equations have the form

b os4nit, F +Fk.1j+
?

g F, =0,
vJ - Tk jk,1 ’

(3.16) F

where Fi'] is the Maxwell field tensor, related to the four-vector

potential Ai by _

.1 . = - s

and where Ji is the current four-vectors
c. Equations of Motion for stressed matter have the form

(3.18) i ;=0 | R : | )

where Ti'j is the.. stress-energy tensor for matter and non-gravitational

fields.

In non-freely-falling frames, the non-gravitational laws of physics
take on curved-spacetime forms, which are obtained from the special
relativistic forms by invoking the rules:

My ™ 8y

n..n

"comma semicolon"

These rules are sometimes referred to as the "Strong Equivalence

Principle”. The result:

(3.19) a. de? = By dxct dxJ .
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4 _ o, _
b, FY. = 4nJ Fiik Kisj FJk’i 0,
(3.20)
F1j= i;j-AJﬁ.’
(3.21) Co TiJ;J.=O,

and so on. For a discussion of pos.‘sijb]_.e "Strong Equivalence Princ_ipl.es"
which use nbn—Riemann affine connections, see Thorne a.nd Will (1971).

A consequence of the geometrical optics limit of the curved-space-
time Maxwell equations (3.20) is th.;.t photoné travel along null geédesics
of the metric, i.e. geodesics which satisfy
(3.22)  ds’= g5 dx* dxd = 0.

- Because of the_~arbitrariness of coordinates in spac.e_time, the
results éf any experiment must always be ‘expres sed in terms of' invariant,
physically—ineasu_.r_ablé quantities: >times measured by atomic clocks
(proper time), di‘sf:a.nt‘:es measured by physical rods or by light signals
(proper distance), and so on. | |

| We complete this review of gfa.v_ity as a metric phenomenon with
a summary of notation, conventions and ‘u_.nits to be used throughout these
lectures:' |

a. Rorﬁan iﬁdiceé run over the values 0, '1" 2 and 3; Gi'eek
indices run over the values {, 2 aﬁd 3.

b. Ténsors and four-vectors are wr'itte.n é.bstractly using thick
type, e.g. g K ; and in component notation using 1talic type, e.g.
glj' Ki three dimensional Euclidean vectors will be written in bold-face
type, e.g. a, X .
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c. The Minkowskii metric has signature - 2, that is .
(3.23) ' ny; = diag [1,-1,-1,-1] .

~d. Round brackets surrounding indices denote symmetrizatién;

square brackes denote anti-symrrietrization, for example,
3 24) A =-1-(A‘+A)

. (1) ©Z Yy T O
G.25) A =i(a.-al

: | (4] =2y~ 7

e. We use "geometrized" units: ﬁnits in which the speed of light
i§ unity -and the Newtonian gravitational cénstant as measured far from
the solar system and galaxy, in _the mean regt—frarhe of the Univefse,
is unity. In these units, the mass of the Sun 1871 «473 km.

For a much more thorough discussion of grax}iation as geometry,

the reader is referred to Misner, Thorne and Wheeler (197_2).
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4, THE PARAMETRIZED POST-NEWTONIAN FORMALISM

4°1, Introduction'

In thié sgction, and for the rem.aind‘er of these lectures, wé will
assume thatvwhatever the correct theory of gravity ’is , it must be a
mefrié theory. This assumption rests oﬁ our.‘con\‘riction that the high-
precisioﬁ E.o.tvgs-Dicke-Braginsky experiments and the gravitational
red_shiﬂ_:'experimen.ts together may be used to rule out all non-metric
theories of gravity (Sect. 3). Of .course, until this con_viction‘has been
completely justified, wér must keep a small portion ob’f our'minds open
to non-metric theories. But for the remaining sections, we will focus
on metric.gravitva‘tional theories. |
| When we examine the fundamén’_cal postulates of metric theories
of gravity. (Sect. 3), we notice a crucial fe‘ature:. .‘nvo matter how com-

plex the theory, no matter what additional gra’.vitationval or cosmologi-

cal fields it deals with, freely falling matter responds only to the metric

gij' This is embodied in the quaﬂons of motion

2.1 i .k S
(4.1) 9——}52— riJkédl(XJ—%J;\— =0, [ test bodies]
' aé dh | |
(4. 2) | TiJ y =0, | o [ stressed matter]

where the covariant derivative is computed solely from the metric
using standard formulas for the Christoffel _sjrmbolé (see Sect. 3).
Ti‘j is the stress-energy tensor for matfer’and all non-gravit'ational

fields, and X\ is an affine parameter along the test-body's world line.
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Thus the only gravitationa;l field \;vhich entérs the eqf;ations of motion
(4. 1.) and (4. 2). ‘is.the metric. The role of the other fields which a |
-given theory may céntaiﬁ can only be that of helping to g.enerat,e the
spacetime curv:ifur_e associated with the metric. Matter may‘cr-eate
these .ﬁelds, and they plus the matter rhay generate the metric, but
they cannot act back directi_ly on the matter, The matfer‘re sponds
only to the metric.

From thi_s'Point qf view, the metric g “and the equations of
motion become the primary theoretical entities, and all that distinguishes
one metric theory frém é.nother is the particular way in which matter
(and possibly other gravitational fields) generates the metric.

The c‘omparison va metric theoriés of gravity with each other .
and with experimént Becomes particularly simple When one tak‘es‘ the
slow-motig)n, post-Newtonian limit. Fo'rttz;nately, the_post-I Newtonian
1limit is sufficiently accurate to encompass alli solar-syétem tests that
can be performed in the foreseeable future, with the éxception of
gravity-wave experimenf:s. (Gravity wé.ves do not e#‘ist in the post-

- Newtonian l_im‘it. )

4° 2.  The Post-’-Newtpnia.n Li.m‘it

In the solar syétem, gravit_altiorg vis weak‘enqugh. thét Newton's
theory of gravity is adequate to explain all but the most minute effects.
To an éccuracy of about a part in 105,’ light rays fravel' on straight

lines at constant speed, and test bodies move according to

(4.3) a=vUu,
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where a is fhe Body's acceleration, and U is the Ngwtonian gravita—
tional potential. From the standpoint of a mefric théory of gravity,
Newtonian physics may be viewed as a first-order approkimation, or
a weak-field limit. Consider a test body momeﬁtafily at rest in a
static external gravitational field. Fromthe géodesic equation (4.1),

the body's acceleration in a (t,x) coordinate system is given by

o .
a - r"IOO

H

(4.4) = %gaﬁgoo,E3 )

In the complete absence of gravity, we know the metric must reduce
 to the special relativity Minkowskii métric

(4. 5) | gy

§ = My = diag (4,151, -0).

In the presence of a very weak gravitational field, then, equation (4.4)

can Yiéld »Newtoniap gravitation, equa_.tion (4.3) only if
(4. 6) (P L

(4.7) =~ | - 20.

850

Equations (4.6) and (4.7) along wi.t_h the equations of motion

represent the Newtonian limit of any metric theory of gravity. But

the Newtonian limit no longer .suffice‘s when we beg_in to demand |
accuraéie-s greater than a parf iﬁ 105'. For example, it caﬁnot account
for Mercury's additional per'i.heli_on' shift of ~ 5 X 10-? _ré.dians pef |
orbit; Thus we need a more accurate approximatiori to the épacetiine

" metric, which will correctly account for solar-system effects which
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go beyond, or "post" Newtonian theory. This higher order approxi-

mation to the metric is known as the Post-Newtonian Limit
(Chandrasekhar 1965). |

The key features of the post-Newtonian limit can be better
understood if we first develop a "bookkeeping" system for keeping
track of "small quantities". | In the solar system,. the Newtonian
gravitational potential U is nowhere larger ’lchan 10_"5 (in geometrized
units-, U is dimensionless). Planetary velocities are related to U

by virial relations 'which yield

(4.8) - vVsu.

The matter making up the Sun and planets is und'er. pressure p, but
this pressure is generally smaller than the matter's gravitational
energy density pU, where p is the rest-mass density of matter; in

other words

(4.9) p/PSU,
(p/p is ~ 10_5 in the Sun, ~ 10_10 in the Earth). Other forms of
energy in the solar system (compressional energy, radiation, thermal

energy, etc.) are small: the specific energy dénsity. II (rati'o of

energy density to rest-mass density) is related to U by

(4.10) . n<uv,

_ ' /  .
9 in the Earth).. These four small

(I is ~ 10_5 in the Sun, ~ 10
quantities are assigned a bookkeeping label which denotes their "_ord_er

Qf smallness ",
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(4.11) U~ vi~p/p~I~o0(2).

Then single powers of velocity v are O(1)', UZ is O(4), Uv is O(3),
Ull is 0(4) and so on. Alsd, since the time-evolution of the solar

system is governed by the motions of its constituents, we have
8/31: ~owvoe V ’

and thus

l3/8t|.

Tofex] " O

(4.12)

We ca.n'nowba.n'albyse the "Post-Newtonian" metric using this
bookkeeping system. The variational principle, equation (3.13) from
which one can derive the geodesic equation (4.1) for a single particle,

may be rewritten

i . 1/2

B | j
dx” d
5§ A [gij‘ar—d?.—} - dt

@]
BT

B - o . a P 1/2
GS‘A v[go.o'i'ZgQav +ga‘3vv] odt .

(4.13)

The integrand in equation (4.13) may thus be viewed as a Lagrangian
1 for a single particle in a metric gravitational field. From equations

(4.6) and (4.7), we see that the Newtonian limit corresponds to
(4.14) L=t -20- 2,

as can verified using the Euler-Lagrange equations. In other_words‘,
Newtonian physics is given by an approximation for L correctto O(2).

Post-Newtonian physicé must therefore involve those terms in L of



next highest order, o(4).

But what happened to odd-order terms, O(1) or O(3)? Odd-
order terms must eontain edd pewers of velocity v or f‘ime-derivatives
9/dt. Since these terms change sign under time reversal, odd-order
terms therefore represent ene‘rgy inﬂew or loss by the system. But,k
conservation of baryons, a fundamental low of physics, ~prohib1ts terms
of Of1) from appearing in L, and conservation of energy in the
Newtonian limit prohibits terms of O(3) These eonservation laws
are discussed further in Subsect. 4°7. In general relativity, the
first odd-order terms which caﬁ appear in L are O(7) terms: these
terms represent energy losf from the system by gravitational radla—
tion (see Chandrasekhar and Esposito [1970], and Burke [ 1971]).

'In order to express L [eq. (4.13)] to O(4), we must know

the various metric compbnents to an appropriate order:
i 2 » » o
(4.15) L _{1‘ -2U- v+ goo[ Q(4)] + ZgoQ[O(3)]v
a By 1/2
+ gap[ o(2)]lv v } .

Thus the post-Newtonian limit of any metric theory of gravity requires

a knowledge of

g to O(4),

00
8o t° 0o(3),
8ap to o(2) .

The post-Newtonian propagatio-n of light rays may also be

obtained using the above approximations to the metric. Since light
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moves along null trajectories (ds = 0), the Lagrangian L must be
formally identical to zero. In the first order, Newtonian limit, this

implies that light must travel along straight lines, at speed 1, i.e.

(4.16) o=L=0 NS VLS Y

In the next, post-Newtonian order, we must have
(4.17) S O=1L ={1 - 2u - ve 4+ géﬁ[O(Z)] vavﬁ}.i/z.

Thus to obtain post-Newtonian corrections to the propagation of light

rays, we need to know

oo to 0O(2),

go43 tq 0(2).

4' 3. The Most General Post- Newtohian Metric

We now proceed to devise the most general post- Newtonlan
metric which any reasonable metric theéry of gravity might predict
for a system of "perfect” fluid. Recall: a pei-fect nonviscous fluid is

one which, in the Newtonian limit, bbeys the usual Eulerian equations

of hydrodynamics:
8p/0t +8(pv)/0x" = 0,

o _
dv U 0
(4.18) PIE P TaT
- ox ox

+ v

mn

o)
3o

a 9
'ax“

»

4
dt

where v® is the vei_ocity of an element of fluid, p 1is the rest-mass



density of matter in the element, p' is the total pressure (matter plus
.radiation) on the element, d/dt is the time derivative "following the

fluid®, and U is the Newtonian gravitational potential,i defined by
| p(x',t)
(4019) U =§ —‘:‘— dX' °

The same fluid in a metric theory of gravity is described by an

energy-momentum tenso r: of the form
(4.20) : Ti‘] =(p +pll + p)uiu‘]' - pgi'j ’-

where u.i is the fluid's four- velocity. We assume thronghout that
.the matter composing the solar system can be idealized as perfect ,.
fluid; for the purposes of most solar-system experiments in the |
coming decades, this has been shown to be a.n adequate assumption
(Will 1971a). _

This general post Newtonian metric should sa.tisfy the following
cenditions: |

(a) ‘The deviations of the metric from flat space are all of
Newtonian or post—Newtonia;n. orde‘r; no post-po,st—Newtonian cr higher-
order deviations are included (see eq. [4.15]). |

(b) The metric becomes Minkowskian (flat space) as the
distance lx - x‘[ between the field point and the matter becomes large.

(c) The metric is generated only by the rest mass, energy,
preé_ure , and velocity; not by their gradients. ‘This is a reasonable
cendit_ien to put on physically acc'eptable bmet:ric theories-, and is. a

condition which can be relaxed quite easily if there is ever any reason
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to: do so.
| (d) The coordinateé are'chosen such that the metric coefﬁci_énts

are dimensionless. |

(e) The form. of thev metric should be indepéndent of our choice
of the origin of the ,coordinate system, and of the orientation of the
spatial axes. The metric sﬁodd depend on fimé only implicitly, via
the evolving distribution of the fluid.

These conditions limit the possible gravitational té-‘rrhs which
may appear in the post- Newtonian metric:

i) 'gaﬁ‘ to O(2): From ’conditiop (e), gaﬂ must behave as a
three-dimensional tensor uﬁder rotations, thus the only O(2) te_rms

which can appear are
(4.21)  glO@] s Ub,g, Uug,

where Uaﬁ is given by

p(x', t)(x—x')a(x-x

| _ N
(4.22) Uyg (%) =S“ B ax' .

x - %!
1) g, to O(3): These metric components must behave as

vectors under rovtat_ions, 'and thus must contain at most the terms

(4.23) g ,[00)]: V,

, Wa, waU, Wﬁuaﬁ’

where

| p'v! dx' p'v! « (-x"Mx-x"),
(4. 24) v -S’____;; W -g ~

a...

ERES
72
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and where the vector w, assumed to be O(1), represents the velocity
of our chosen coordinate system relative to the mean rest-frame of
the Universe (recall: v is the velocity of each element of matter

relative to our coordinate system).

iil) g to O(4): This should be a scalar under rotations, and

thus may contain at most the O(4) terms:

>

(4. 25) Eool OWI: UL, 2, @), &5, @, G, B,
2 a B a., a :
w U, ww Uaﬁ’ w VQ, W Wa/" :
, wheré.
1 12 L'y
q:i = _LV____Xm , d)zz _;&*dx' ,
lx—xll ~. Ix_x'l ~
A : _ . "t ~ P dx
(4. 26) &, = LA dx' -, &, =\ —=
_ 3 T - %4 ;
. Cx- %' | [x - x']
p'[V"’(X-X')]Z ’ : p'x -x") | dv'
AL PN & ()
lx—x']3. ~ Ix-x'l dt "~

At first glance, the reader might be'distﬁrbed by the presence -
of metric terms which.-depend dn our coordinate sy.stem's velocity w
relative to the mean rest-frame of the ‘Universe. However we can find
no ap r‘iori reason for ignoring bsuch ferm_s. These terms do not |
viélate the pi'incip.les:of special relativity, sinﬁe- théy a.re_‘purely'gravi-
’_catioria,l terms, whilé si)eéial relativity is valid only when the éffects

of gravitation can be ignored; but they do suggest that the response
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of matter to gravitation may be affected by motion relative to the
Universe. Nonetheless there is good reason for including them:
several metric theories of gravity say they should be included (see

Sect. 5). -

Gauge

We can restrict the form of the post- Newtonian metric some-

4°4, Coordinate-System Freedom and the Standard Post-Newtonian-

what by making use of the arbitrariness of coordinates embodied in
the postulates of a metric theory. An infinitesimal coordinate or

"gauge " transformation
(4.27) et =+ el
~ changes the metric to

S gjzi :

- (4.28) : gL. ﬁ.gij - f;i

By choosing

(4.29) 6, =X,

where X is the so-called "supefpotential" (Chandrasekhar and Lebovitz

1962b) given by

(4.30)

we obtain , to post- Newtonian order,
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fo_

(4.31) gaﬁ = gaﬁ

+ ZeUﬁa - ZeUa

g p-

So by an appropriate choice of €, we can eliminate one of the terms

(eq. [ 4.21]) from Baps We will eliminate Uaﬁ° Similarly by choosing

‘ “ 23
(4‘32),_ S go" >\1X30+>\-2W X’a

weé obtain, to post- Newtonian order

1 ' - a ' o
(4.33) g€, = 8oo T2 %y - zxia- 2)\103 S2Lw Vot 2hw W
By an appropriate choice of )\1 and XZ,'we can always eliminate the
terms 8 and waWa from 800" Note that the transformation equations

(4. 29) and (4.32) do not introduce any new terms of O(3) into 800"

We will thus adopt a standard Post-Newtonian gauge -- that
gauge in which the spatial part of the metric is diagonal and isotropic
I(i.e. no U .), arid,in which g contains no terms B or woW._.

. af , _ - 200 . o
There is no physical significance in this gauge choice; it is purely a

matter of convenience.

4°5, The Parametrized Post-Newtonian Metric

We now know the most general form for the post- Newtonian
perfect-ﬂuid‘metric in any metric theory of gra\}ity. | Now the only
way any one theory's metric can differ from any other theory'sb is
in the numerical coefficients which multiply each"terrn in the metric.
By replaciﬁg' each numerical coefficient by an arbitrary Paramete:,
we obtain a."sup,er rﬁetr’ic theory Qf gravity"., whose special cases

(particular numerical values of the parameters) are the post-Newtonian
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metrics of particular theories of gravity. This "super metric" is

called the Parametrized Post- Newtonian (PPN) metric, and the

parameters are called PPN Parameters.

How many PPN parameters do we need? In the standard PPN
gauge, the metric contains a total of fourteen terms, but only nine
PPN parameters are needed. We will show in Subsect. 4° 6 that the
five. v:.—dependent metric terrns are not completely independent: theirv
multipliers (parameters) are related to the multipliers of the nine
other metric terms.

We will also show in Subse_ct‘. 4°6 and 4° 7 that we can give a
physical significance to our nine PPN parameters if we use certain
linear combinations of parameters as multipliers of the individual
metric terms. With these remarks, and with detailed_prodfs left .'
to Subsect. 4°6 and 4'7, we give the PPN metric, in Table 4.1.
Table 4. I also includes detailed definitions of the PPN.coordinate :
system and the matter varlables , formulas for the perfect- ﬂuid
stress- energy tensor to post- Newtonian order, and the equations of
motion.

Th1s use of parameters to describe the post- Newtonian’ limit

of metric theories of gravity is called the Parametrized Post- Newtoman

(PPN) Formalism. A primitlve version of such a formalisrn was

devised and studied -by Eddington (1922), Robertson (1962) and Schiff
(1967). This Eddington- Robertson- Shiff formalism treated the solar-
system, metric as that of a spherical non- rot_ating Sun, and idealized
the_planets as test bodies moving on geodesics of this metric. The

metrio in this version of the formalism reads
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Boo = 1 - 2M/r Zﬁ(M/r)Z‘v ,
(4. 34) 8o = O
Bp = - (1 + 2YM/P)B,g

where r = (XZ +y2 + zz)i/z, M is the mass of the Sun; and P and

y are PPN parameters.
- These two parameters may be given a physical interpretation

in this formalism. The pé.rameter B measures the amount of

" non-linearity [(M/r)Z] which a given theory puts into the g com-
ponént of the metric, and th_e p>ai'a_.meter Yy measures the amount of

curvature of space produced by a given gravitating body in a given

n'ietkric.: theory (for a detailed discussion of the physical meaning of'
space-curvature, see Misner, Thorn,e‘, and Wheel'er'[‘1__972]). N
More gené‘ral versions of the formalism were examined by
Shiff (1960a), Baierlein (1967), Nordtvedt (1968b), Will (1971a), and
Will and .Nordtvedt”(1972).' fn these lectures, we will use the Will-

Nordtvedt version of the PPN.'fornialism.

4'6, Lorentz Invariance and the PPN Metric

The PPN metric has a considerable amount of symmetry built
into it. o

(i) By using metric terrﬁé constructed from relative distances
[x - x' | between fleld points and. the matter, we have made tl.'lek metric
1ndeper_1&ent of our choice of coordinate system origin.. Put diﬁ'e’rently', '

we have guaranfeed that the metric be invariant under a three-

dimensional linear translation:
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(4.35) ‘ NI R

(ii) We have made the metric independent of our choice of the
origin of time by making all time dependence in gij implicit, via
the evolving distributi_ons of density, pressure, etc. Thus we have

built into the metric, invariance under a 1inear time translation:
(4. 36) tT=t+b‘.

(iii) By constructing the_ metric terms out of th_i'ee—'dimensional
scalars, vectors and tensors where appropriate, we have made the
metric independent of our choice of axes, i.e. invariant under a three-

dimensional rotation:

- af _ Ja B . o TPp _ .o
_(4'37) | x —Rﬁx 5o RIgRT =%

(y) A further symmetry has been_ bt'J.iltbinto the mefric in Table 4.1,
Alth.ough‘the' PPN metric contains_terms which depend on the (arbitrary)
velocity of our éhosen cerdinéte system relative to the Universe, the
results of physical méasuiements clearly must not (this is fhe funda-
mental poétulate of covariance -; the results of ﬁhysical measurements
cannot depend on éfbitrary coordinate systems); For a system such
as the Sun and planets, the only unique physically measurable velocities
are thelvelocities of elements of matter relative to each othef and to the
~solar-system center of.n}ass, and the velbcity wp of the éolar-systgm
center of mass (Bafycenter) relative to the Uﬁi.verse's comoving frame
(as rﬁeasu‘;'éd, for example, by studying doppler shifts in the cosmic

microwave radiation). Thus the PPN pred.iction for any physical effect
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can depend only on these rélattve velocities and on Wps never on the
arbitrary coordinate-system velocity We The only way to guarantee
this is to demand that the PPN metric have the same fun'ctional form
(when written in the standard gauge), independent of the velocity of

the coordinate system relative to the Universe.. Put differently, the

PPN metric must be invariant under a Lorentz transformation (o.f

low velocity, of course, to preserve the post-Newtonian approximation):

-1

.38 T LxJ nl =L kL

j
kM

In this subsection we will prove that by writing the :v—dependent metric
terms in the manner shown in Table 4.I, we have built this constraint
into the PPN metric.

Since the PPN metric (in the standard g_auge) contains.all
possible metric functions cons istent with our conditions (a) to (d) in
Subsect. 4° 3',~invari.anee in the form of the metric under_ the é.b_ove
transformations is equivslent to invariance in the valnes of the PPN
parameters, The set of linear trensformations we.have discussed -
above forms the ten parameter Inhomogeneous Lorentz Group (four -
translations, three rotations, three Lorentz transformations -~ these
are the only 1inear tranformatlons which lea.ve invariant the
Mmkowsk.ii_,.metnc , the form taken by gij far from the matter).

We can thus restate our s’ymmetry conditions (i) to (iv) on the PPN
metric in the following wey' | |

The PPN parameters must behave as scalars under (post-

Newtonian preservmg) transformations in the Inhomogeneous Lorentz

Group.
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It rernains only to prove tbhat the PPN metric'in Table 4.1 has
indeed had Lorentz invariance built in. |

Consider the PPN metric (Table 4.I) written in a coordinate
system which movee at velocity w relative to the mean rest-frame
of the Universe. We make a Lorentz transformation to a new frame
which moves at.velocity u rel_ative to the old frame, assuming ,E‘I
is small, i.e; of 0(1)°, This transformation from old coordinates
(t, x) to new coordinates (T, §) can be expanded in powers of u ‘to
the required order: this approximate form of the I_orentz Transformati.on

has been called a Post-Galilean Transformat1on (Chandrasekhar and

Contopoulos 1967), and has the form

TH
n

: §+(1+%u2)u7 +%(§'u)g+[0(4)jxﬁ',
(4.39) 3 ~ o

K
1]

(1 45 Z+—-u)+(1+—u)§ wtfoB)] xT ,

where ur is assumed to be O(0).

We now apply this transformation to the PPN metric and show
that in the new coordinates (1,§) it has exactly the same form as it

had in the old coordinates (t,x). We use the standard transformation

Claw (x°=t, £%=7):

' 3Xk 8x£'
(4'4_0) gij(g”r)': g‘gql‘ ’a_gj" gk‘e_(f:t)_ .

We must also express the functions (fields) which appear in gkl (x,t)
in terms of the new coordinates. Since p., AH, and p .are all measured
in comoving local inertial frames, they are unchanged by the transfor-

mation: for any given element of fluid,
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P(x,t) = P(E,T)
(4.4:1') _ ‘ H(f:t) = H(E:T) ’
plx,t) = p(E,7) .

If vix,t) and v(§ ,T) are the matter velocities in the two coordinate

systems, they are related by
(4.42) v=v tut+0(3).

If o ls the velocity of the new frame relative to the Universe, it is

~

related to w by
(4.43)  w=w-ut0(3).

The elements of volume dx' and df' in the two frames are related

by the usﬁal Jacobian tran‘sformatio.n’flaw, which gives

(4.49) dx'=(1-v'-u-3u’+oa) at' .

Wé make use of a formula given by 'Chandrasekhaif' and Contopoulos

(1967), n_a_rne]..y.,

g g 1 2 | |
(4, 45) : = 1 +x(un" )" +(u-n")(v'*n") +O(4); ,
' o e o)
yvhere_
(e.46) n'=(-8V/[E-E'].

We then find, using equations (4.41), (4.42), (4.44), and (4.45), along

with the definitions of the metric functions , equations (4.19), (4.22)
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(4.24) and (4.26), that

(4.47) - Ulx,t) = (1 - —u )U(f; T) - u V (6,7)

+ uaWa(é,'T) +-—i— uaupU ﬁ(é ,T) + O(6),

U, aliet) = Uyglf,m) +0(4)

(4. 48) ap'®
(@49 VG0 = V6, +utUE.T) +O00)
(4. 50) WLt = W(E,m) 4 Pu_q(&,7) +005)
(4.51a) 'éi (x,t) = &4 (§,7) + ZuaVa(é,'r‘) ¥ QZU(E,Tj ¥ 0(6),
‘(4_. 51b) .§2(3’4)(§,t) = @2(3’4)(5,7)' +0(6) , |
(4.52)  Glx.t) = GfE,T) +2 gl +uabu g + o)

p~
Applying transformation equations (4,.39) to the PPN metric (Table 4.1)
and making use of equations (4.40), (4.43), and (4.47) to (4.52), we

obtain, for the metric in the (7,€) system, to post-Newtonién order

g, (£,7) = 1 - 2U(E,T) + 2U(5,m)°
- {2y + 2 +a3 + gi)cbi(g,-r) + ;1.0(,;:"")
o - 203y = 2B L HLLIRHE,T) (L5084 (E,m)
(4.53)
3yt €4)<I>4(§,T)]

2"” tue, ™) +a, ww‘*u ap&r™

- (2a,- ai)w Vv (6,7) (L - Ly- ‘_’2’“ x(g,'r),oa .

+(011-01
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g, :32.(4y+3 ta, -a2+g1)va(§3rr) +.§_(1 ta, -4 )W (E,T)
(4. 54) | | f%(ai —-Zaz)vwaU(ﬁ_,T) +a2wpUap(€,T)
g -t e g
(4.55) gt - [+ 2vUE, M8,

Note that because of the presence of gravitating matter, the

Lorentz transformation has introduced additional terms into the metric:

(1 - ;1 - a’z)u X’Oq in goo ’

1, B
-2-(1 - Qi - az)u X !ap 1n goa M

But these terms can always be removed by an infinitesimal gauge
transformation
T

(4- 56) . » t =t +%(1 - gi - az)uBX:ﬁ °

In other wo:fds_, a pure Lorentz transformation of the PPN metric .

takes it out of the étandard PPN gauge. Thus the Lorentz-transformed
PPN metric eqs. (4.53), (4.54) and (4.55), written back in the standard -
PPN gauge, has exactly the same functioﬁél _forfn as the original PPN
metric. Q.E.D.

| | We can now see the physical significance of the PPN parameters
ay, @, ‘and ays which appear as multipliers of the Xv—depende;nt terms

in the metric. These parameters measure the extent and manner in

which motion relative to the mean rest-frame of the Universe affects
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the post- Newtonian metric, and produces observable effects. The

parameters @, @, and a, have been named "preferred frame"

) parameters (Will and Noi'dtvedt 1972) since they measufe the sizes

of post-Newtonian effects produced by motion relative to the "preferred"
rest-ffame of the _U'nivers.e. If all three are zero, no such effects are
presenf. Further discussion of preferréd—-frame'effects appears in

Sect, 6 and 7.

4°7, Conservaﬂon I.aws in the PPN Formalism .

Conservation laws in Ne\ﬁtonian' gravitation theofy are fa.iniliar:
for isolated gravitating systems, ma.és is conserved, energy is con-
served, line.ar' and angular momenta are conserved, and the center of
mass of the system moves uniformly. Not so in every metric theory
of gi-avity. Some theories violate somé of these conservation laws
at the éost-Newtonian level, and it is the purpoée of this section to .
explore suéh violations using the PPN formalism.

W’e-begin by making a numbelj‘ of a'ssumptions_a_bout the propertieé

of matter which should be valid in any theory of gravity.

Assumption 1: The total number of baryons §A in any sample of

matter is conserved. Conservation of baryon number is one of the

most fundamental laws of physics, and should certainly be valid in
the presence of gravity. This law can be expressed as a continuity
equaﬂon for the baryon number density n: ina local inertial frame

momenfarily comoving with the matter, the equation

(4.57) 0= d(6A)_/dt = d(n&V)/dt
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is equivalent to

(4. 58) on/ot + (8/0x ) (nv") = 0 ,

where v is the matter velocity in the comoving frame (v =0 but
V * v# 0). The Lorentz-invariant version of this continuity equation,

~

valid in any local inertial frame is

’ n _ B o o a, i
(4.59) _ 0= z=(nu”) +——X—a(nu )—(nu),.1 )
where u- is the baryon four-velocity, gfven"by

(4.60) ol = dxl/as .

Equation (4. 5‘)) can then be generalized to curved spacetime using the

standafd "comma-goes-to-semicolon” rule (Sect. 3)
' i
(4. 61) 0= (nu),, .

Equatiori (4; 61) is thé law of Baryon Conservation in covariant form.

Assumption 2: Matter is composed of a chemically homogeneous,

electrically neutral distribution of atoms composed of neutrons, protons,

and electrons. The chemical composition of matter is static.

For the pur_pése of solar-system experimental tests (although
not for the theory of solar and planetgry structdre) this assumption is
a reasonable model for solar-system matter..

The rest-mass deinsity of.matt.er p is a physically measured
quantity, obtained as follows: in va local inertial frame which comoves

momentarily with an element of matter, add together the rest masses

50



of all the atoms in the element, and divide by the volume &V of the

element. Then

. element
(4. 62) p = Z B, /8V.
3 A

 where By is the rest-mass of the i'th atom.

Lemma: For matter which conforms with Assumption 2,

(4. 63) o =pn,

where n is the number density of baryons, and p is a constant,
Proof: The mass of each atom consists of baryon rest-mass,

and binding energy, and .may be written
(4.64) LI SAp_ Apy s

‘.wh‘eré 6Ai is t_he number of baryons in the atom, Fo is an a_,tomic_

masbs unit, ‘and Api is the "mass-excess", related to the nuclear and

atomic binding eneérgy. Then from equation (4. 62)
: : ‘ element

p=(6ap  + Z Bp,)/8V
o | T
(4.65) _ element

= (6A/8V)(p, * Z Api/éA) .
i
Because of our assumption of chemical hdrriogeheity and time-inde-
pendence, the rest-mass per baryon

‘ - element v
(4.66) Bo * Z Ap,/6A =,
iv .
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is a constant. Thus

(4.67) _ p=pn. Q.E.D.
| Lemma: If baryons are conserved, and matter conforms

w__ithAs'suinption 2, then

(4. 68) '(pui);i =0 .
Proof: It.is sufficieht to _work in a local comoving inertial

f?ame. From equation (4. 57) and tl'aevconstancy of p, we get
(4.69) :  0 = d(unéV)/dt = d(pﬁV)/dt ,

‘wh‘ic‘h is equivalent to |

(4.70) 0= 9p/dt +sz

The 'general'ization of this equation to arbitrary inertial frames and to

cufved spa".cetime proceeds as before; thus
4.71) (pu) ;=0. Q.E.D,

Equation (4.71) is the Law of Cdnservation'of Rest Mass, in covariant

form. For matter which Qbeys Assumption 2 it is ‘valid in any metric
theory of gravity, both at the post-Newtonian level and at the exact,

strong-field level.

By combining this law with the equations of motion for stressed .
~ matter,

K ' i
(4.72) - T:.j-O,

we can obtain a further impor'tant law, which too is exact and theory-
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independent: the Law of Local Energy Conservation or the Law of

Isentropic Flow.

We follow Chandrasekhar (1969) and evaluate the'equation

(4.73) u.lTl'].. =0 ,

3J

using the perfect-fluid stress-energy tensor, equation (4.20). We
work in a local inertial frame, momentarily comoving with the

element &V of fluid. Then from equation (4.73),
(4.74) | (8/8t)(p +pII) + V .+ (p + oIl +p)v = 0.

This can be rewritten

(4.75) (@/at)(p +pll) +(p + PV * v 4TV ¥ =0 .
But
(4.76) 7 - v = (1/6V)d(6V) dt .

'I“hué equation (4.75) becomes
(4.77) - (d/at) [(p + pII)&V] + pd(&V)/dt = 0 .

So, in a local comoving inertial frame, vt_h’e_ change in the total energy

(rest-mass plus internal) of an e_iement of fluid is ba.lanced by the

work done [ pd(6V)]; this simply expi'esses Local Conservation of Energy,

or Isentropic Flow, since from the First Law of Thermodynamics, and

from equation (4.77)

(4.78) Td (Entropy) = d (Energy) +pdV =0 .
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Because of the Conse}'vation of Rest Mass, p&V 1is constant, and

equation (4.77) .c':an be written in the form
(4.79) - pdll/dt - (p/p) dp/dt =0 .

In frame-invariant curved-spacetime language, equation (4.79) has

the form (C-handrasekhar 1969):
(4. 80) - ui[n’i+ip(1/p)’i]=0'.

These exact, covar‘iant,.theory-independent local conservation laws
are summarized in Table 4.1I.
We can obtain a useful form of the law of Con_se_rvé,tion of Rest

Mass by noticing that

(4.81) (pui);i'= (1/V-g)pV-g u_i).,i ,
wher_e
(4.82) » g = det ”gij .

In a coordinate system (t,x), equation (4.71) can thus be written

(4. 83) 0= (pV-g ui)"i = (pV-gu?)  + (Vg u®v)
since
(4.84) u_.d =u%% .

: ' %
By defining the "conserved density" p :

: ' * ' ;
(4. 85) p = p¥-gu® ,
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' we can cast equation (4.83) in the form of an "Eulerian" continuity

equation, valid in our (t,x) coordinate system:
. ’ * *
(4. 86) 9p fot +V c p v =0,

This "conserved" density is useful because for any function f

defined in a volume V whose boundary is outside the matter
*x * _
(4.87) (d/dt) S‘ p fdx =§ p (df/dt) dx .
v
Notice that equation (4.87) implies

. * .
(4.88) - dM/dt =0, M= S' p dx,
A Ty ~

where M is the total rest mass of the particles in the volume V;

from equation (4.85), we get,

M= S[ puV-g] dax

(4.89) S bd (proper v_o_lume_)'

total rest mass of particles. -

- The cqnservation laws s,g.:‘nmjarized in Table 4.II are purely
local cqnservation lawsg they depend énly on properties of matter as- |
measuréd in local, comoving inertial frames, .where relativistic and
gravitafional effects are negligible (hence they are theo’ry-in‘dependent).
Equation (4.89) represents our first "global" or "infegral" conservat;ion
law; however, it is really r;othing‘ more than conservétién of baryoﬁs |

cqui)led with our specific model for matter.
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However, when we attempt to devise more gene ral integr‘al
conservation laws, such as for total ene;;gy (as opposed to just r‘est—
mass), total momentum, or total angular momentum we run:into
difficulties. |

It is well known [see, for example, Landau and Lifschitz
(196.2)]» that integral covnservatbivonllaws cannot be dbtained directly

" from the equation of motion for stressed matter,
(4. 90) ™ =0,

because of the presence of the Christoffel symbols in the covariant
derivative. Rather, one searches for a quantity iJ which reduces

to Ti‘]' in flat spacetime, and whose ordinary divergence is zero, i.e.,

(4.91) @9 ;=o0.

Then, providing ®iJ is symmetric, one finds that the quantities
(4.92) pl - S‘ e¥as , Y- S‘ N L
‘ z ) z

aré conserved, .i. €., the integrals in equation (4.92) vanish when taken
over a closed 3-dimensional hypersurface Z. If one chooses a coordinate
system (t,.f) in which 2 is a constanté-time -hypersvurfac-e and extends
infinitely far in all directions, then p and Jij are independent of

time, and are giveﬁ by
(4.93) pl= g®i° ax , J9= ZS. Ligdlo gy

where dx is a volurhe element of ordinary th;'ee—_dirhens ional space.
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An appropriate choice of ®" allows one to interpret the components of
P1 and JY in the usual way: as measured in the asymptotically flat
spacetime far from the matter, P° is the total energy, P¥  is the

total momentum, JaFS is the total angular momentum and 3% deter-

mines the motion of the center of mass of the matter.

The quéntity ®.ij, norrﬁally called the stress-energy complex,
- has beeﬁ found for the exact versions 6f general relativity ‘(L'an_dau.and
Lifshitz. 1962), Bra.nsA-Dic:ke theory (Nvutku 1969b, Dykla 1972)vand
others (Ni 1972¢). It has also been explicitly calculated in the post-
Newtonian and post-post—Néwtonian approximations of ge_neralh rela-
tivity (Chandrasekhal_' 1969; Chandrasekhar and Nutku 1969). (A wide
yariety of non- symmetric stress-en.ergy complexes have been found |
for general relativity, but only the symmetric version guarantees
conservation of _angular'mo'rnentﬁm‘. 3
Here we will focus oln' thé post-Newtonian limit, and will use .

_t-h'e PPN formalism to attémpt to construct a ®1‘j.

| The most general possible form for @ij which reduces to Tij '
in flat spacetiﬁe (negligible gravitational fi:elds) , and which is accuraté

to poSt- Newtonian order,is

ij

(4.94) @9 = (1 - auy(rii+ ),

where a is a constant (to be determined), and tJ is a quantity (which
i'nay be i_nterpreté_d as gra‘vitaﬁonal‘stres.s-er;ergy)itwhich vanishes in

flat space-time, _a'nd which is a function of the fields U, Uags’ q>1 , CI)AZ’ ¢3"
'I>4,d, vV, and W_, thevir'deriv.atives, and w (é,nd may also contain

the matter variables p, II, p, and v). We reject terms in _@iJ of the
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- form

B, nrtd,  e/mTd, W'Y,
since such terms do not vanish for arbitrary distributions of stressed
matter in regions of negligible gravitational field.

By combining equations (4. 90), (4.91) and (4. 94) we find that
tY must satisfy (to post-Newtonian order)

ij ij- i ik ik ij
4,95 B _au V=1, T +1'J.T +au . T .
~ (4.95) LT .3 I K al ;

In order to solve eqﬁation (4.95) for. tiJ we will use the
following equations, which are equivalent to the definitions for the v
metric functions, equations (4.19), (4.22), (4.24), (4 26) and (4. 30),

to express matter variables in terms of field quantities:
VZU = - 4mp VAR = - 4wpv
‘ 0 a a ’

vie, = - 41rpv2 , V7@, =- 4wl ,

1
(4. 96)

v, = - 4mpll , V@, = - 4mp ,
3 - 4
2 | o o :
Vi =-2U0 , v =-U 3
and we will use the following identity, which is valid for any function f:

" | | 1 o2
(4.97) 4wt = - 20/0xg) (U (of gy = 78apY,yF,y) T U,V

We substitute into eq.uatiozi (4.95) the formulas for TiJ and for‘the'

PPN Christoffel symbols calculated from the metric _(Table 4.1), and
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l _ _ : :
use equations (4.96) and (4.97) to obtain (to post-Newtonian order)

for i =0,
amt® ;= (8 /o0 16y +2a - 5)|vU| 2]
(4.98) | L axP) By +a- 2)U U o |

+ 3y ta- 3)UsY(VYsﬁ - Vﬁ,y)] .

Equation (4.98) can bé_integrated directly (making use of the condition

that tiJ vanish in flat spacetinie) to yield

(4.99) 0 = (8m {6y + 2a - 5)|VU|® ,

(4.100) o

o
]

-4, : '
- am T [By ta - 2U U By ta- 30U (Vo -V,

An expression for the conserved total energy can be obtained
using équations (4.93), (4.94), and (4.99). The result is (after an

integration by parts):

U+ dx,

o -

(4.101) P° =§ 0¥t + _12-,v2 -

where we have used the PPN version of the "conserved” density

(cf. eq. [ 4.85])

(4.102) p2 = p(1 + S v +3yU +0()) .

The first term in equation (4. 101) is the total conserved rest-mass of
particles in the fluid (eq. [4._89] ). ‘The other terms in equation (4.102)

are the total kinetic, gravitational, and internal energies in the fluid,
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whose sum is conserved accordiﬁg to Newtonian theory {which can be
used in any post—.Nerton’lan terms). - Thus P° is simply the total
mass—energyvof the fluid. So far we have vfound nothing new. Equation
(4. 102) for P° can be found directly using the conservation o£ rest-
mass (eq. [ 4.88]) and Newtonian theoAry.

For i=a, we must first compute ta@ to Newtonién order.
Equation (4.95) yields |
(4.103) 4111:043"3 = (a/axg)_'(vu’qu,ﬁ' - isaﬁu U \'() -

- from which we obtain the standard Newtonian result (Chandrasekhar 1969)

@00 7 =(4*)—_1(U,aﬂ,,ﬁ' 3 8p0,40, +

Newtonian o

ap

This Newtonlan approximation for t can now be used to simplify 311
post-N_éwtonian terms in equation (4.95). We obtain after a lengthy

calculation, the post- Newtonian eqﬁ.ati_on for t9:

4mt™ (B/Bt)[ (ay+2ta - 20, +20,)U U
—_ - + +a-
+2(4Y+4+&1)U,’Y(VY:Q Va,-y) (5yt+ta-1)U YVO‘:Y
- (5y ta- 1)(8/8xY)(UV ) +012W[3U pU o --12- 1w U U 5]

[N

+ (a/axﬁ)‘g[ 1 -}2—(5y+2§.2— a- 1)U] (U,QU,p' > GapU’YU’Y)

+IU (48 L) g - 7 84gU (820 ]

+ (4‘Y+3+a1—az+§1)[ U.,(QV‘B),O -‘Z 6apU’YVYs°]
1

f (1 +a2 B gi)[Us(aWﬁ):o -2 6Q§U9‘YWY,0
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- 2lay Fate Vg 1V p,y] " 7%V v, 8] iy 8

2
aﬁ(U,o)

1 ’-)
B 2 045

1
=6 U_-
2 aﬁUm ny.é)

1 |
-z layt2ta - 20, +20)6

| t
(4.105) |
+1a

23¢>z)w(Ul'.]'

Y. 6
- a,w'w (U:(QUB)Ys5

L VY ' Lo
--(oz1 —203)w_ (V‘y,(aU,ﬁ) -5 aaﬁst5U’5)

+ZawY(x‘ U -—%6

2 ,oyla ,B) apX ,oYﬁU,ﬁ)

1 | ' ‘ Y
+-—2- (a1 +2a2)w(aU’p‘)v’o— azéaﬁw U,YU,o

+—1-ar U [V
'Y

Y
> oy ]+aww[ U’ﬁ]U

v (@¥8) " VeV B,y )Y

!
+7(a

- 22,)U wi U o lau (v ]

. 24U Yy La™el " Y8l oy
+ (5y +a +1)U(pv*P + 6%Pp)
+ 4mQ% ,
w‘hezl'e
(4.106) 4% = (2y +2 tay + 1)@
+2[(3y - 28 +1 + L)@, H (L HL )P, +3(y AL
and whére
- @ ean 1 2, | -1 2
(4.107) Q% = (0U/8x") 5 agtt )pv i+ azpy e w + (8) L, 1vul”
+ ;3pn +3¢,p t (87) Y G] .

The term QF can not in general be written as a combination of
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gradients and time derivatives of fluid quantities and gravitatidnal
fieldS -- \or' so we believe. (We have been unable to develop a com-
pletely rigorous proof; but strong arguments that this is so'are given
in Will [1971c] ) Therefore, in order for to{‘j (and hence ®aj) to
exist and to have a f.or.m which involves only matter and .gravitational
field variables and their derivatives, each PPN parameter combination
Q% (eq. [4.107]) must vanish separately, i.e., the parameters muat

satisfy
(4.108) §1=§Z=§3=Q4=a3=0.

These cond1t1ons can also be obtained using Chandrasekhar's (1965)
'technique which consists of integrating the hydrodynamic equations of
motion over all space and calculating a conserved momentum P?

Using the PPN formalism, .the_ corresponding result is

(d/dt)S. V [1 +—1-V + (Zy + 1)U +II +p/p]

(4.109) gy -t gi’va -zl tay- t%,

~

1, . 1 B |
- > lay - @)W U - S a,w Uap}dx
+ S‘ Qa dx =

The second term in equa_tion (4.109) can be written as a total time
derivative of an integral over all space, only if 'Q'a can be w‘ritten as
a combina_tic}_n of time derivatives, and spatial .di.verg_en-c-es (which lead
to surface integrals at infinity tha’_c vanish). But according to fhe |

reasoning given in Will (1971c), this can only be true if the five
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parameter constraints of equation (4.108) are satisfied. Then Q%= 0,
and we have a conserved momentum.'
We now see the physical signi'ﬁcance of the parameters

Ql , LZ’ §3, §4 and ag: They measure the extent and manner in which

a given theory of gravity predicts violations of conservation of total

momentum. If all five are zero for any given theory, then momentum
is cons._eryed; if some are non-zero, then total momentum may not be
conserved. ‘Notice'thaf:. the parameter a3' plays a duai role in the
PPN formalism, both as a conservation-law par'ameter, and as a
prefei'red-frame parameter.

In order to guarantee conservatio»ri of _angulér momentum, btafp
must be symmetric. The 1:‘1'[3 part of equation (4. 105) contains some

antisymmetric terms; in order that they vanish for arbitrary systems,

we must have
(4.110) a, =a, =0,

It is the symmetry of t°%, i.e. uniform motion of the center
of mass which then fixes the value of a. Comparing t°% of equation
(4.98) with t*° of equation (4.105), we find using equations (4.108)

and (4.110):

(4. 111) =1 - 5y.

We apply the name Fully Conservative Theory to any theory of
gravity which possesses a full complement of post-Newtonian conser-
vation laws: momentum, ang{ula.r momentum and center-of-mass

motion, i.e. whose PPN parameters satisfy
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(4.112) | a =a2=a3=§1=.§2=§3=.§4:0_

A Fully Conservative Theory cannot be a preferred-frame

theory (ar1 =ea,=a;= 0). For such theories, tY and ®"Y have the

_form:
(4.113) | £°° = - (8v)'1(4Y +_3)|YUfz_:
oa ao -1 :
(4.114) t°% = %9 = (4m) [(zy+1)U’QU’O+(,2y+2)U,p(vﬁ’a-Va,p)] ,
B - am ! [1-Gy-1)UlU U .-16 U U )
',a B 2 af fY"Y
' 1
+4lU 2 8 7 %pU 2y
| e
: * (4Y+3)[ U:(QVB):O — 2 6“6U’YVYs0]
(4.115) , _
_ v 1 _
+[U,awﬁ).o_‘75_apU,ywy;o]
- 80+ OV, 1V g,y] "7 CapVT v, 8] VT, 6l
1 2
-= (2y+1)6a‘3(U’0) ,
(4.116) @Y = [1 + (5y - HUN(TH + ),
and the conserved qua;ntities are
(4.117) ‘P°=S‘p*(1+%v2-%U+H)’dx,
(4.118)  P° =S. p*{v"‘[i +% 2.+(2Y+1)U +II +p/pl]
] %(4\, +3)VY - % w® }df ,
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(4.119) 7P - zS‘ P*X[a{;rﬁl[i +2v24(2y +1)U T+ p/p]
T 3)vAl . 2 Wp]} dx
(4. 120) 7%° = g o *x%(1 +%v2 - _12.U +10) dx - P% .

By defining a center of mass X', given by

: S . -
o '_fpxé(l +—§-v2—%U+H)d§

(4.121) . X' = % - ,
Jeltt +5v* - S U +1I) ax

we find from equations (4.117) and (4.‘1 20) and the constancy of J°,

that
(4.122) ax%/dat = P*/P° ,

i.e., the center of mass move_'sunifobrmly with velocity P%/P°,
The c.:_onserved' quantities P1 and Jij' transform as a four-vector
and an antisvyfnmetz"ic ténsor under low-velocity Lorentz Transfor-
mations (for diséussion see Will [1971c]).
Some thgqries of gravity may possess only énergy and momen-

tum conservation laws, i.e., their parameters may satisfy

81 =tp=83=6,=23=0,
(4.123) '
' one of {011,012}.9e 0.

" We call such theories Semi-Conservative Theories. Their conserved
energy P°, and momentum PY%, are given by equations (4.101) and

(4.109), and Pi transforms under Lorentz Transformations as a
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four-vector. There is no conserved JlJ in such theories. Semi-
conservative theories may be "preferred-frame" theories (ar1 + 0,
a, # 0).

Non-Conservative Theories possess no conservation laws

other than for energy; their parameters satisfy

(4.124) one of {4y, 4,y bgy Lys @3} # 0 .

'i’here is a close conneétion between conservation laws and
Lagrangian formulations of metric theories. Any metric theory
whose field equations are derived from an invariant L.agrangian action
principle can be shown to possess integral éonservatibn laws for.
ghergy and momentum (Trautman f1962], and. references cited therein).
Thus any Lagrangian based xﬁetric theory of gravity is at least Semi-

Conservative, i.e., has PPN parameter values
@125 fsl ety iyt n

Table 4,111 summarizes these conservation law properties of

metric theories of gravity.
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5. Metric Theories of Gravity and their Post- Newtonian Limit

5°1. Introduction

We now breathe some life into the PPN parameters by examining
a wide class of twentieth-century fnetric theories of grévity and calcu-
lating their PPN parameter values. This section will iliustrate an
important application of the PPN formalism, that of comparing and
ciassifying metric theories of gravity. Mu;:h of the. discussion in this
sectio.n is based on work by Wei-Tou Ni (1972a); lother pertinent
references are Thorne, Will and Ni (1971), and Will and Nordtvedt

(1972).

5°2. General Relativity

a. Principal references: Einstein (1916); Standard textbooks

and references cited therein, e.g., Synge (1960), and Misner, Thorne,

and Wheeler (1972).

b. Gravitational Fields Present: g

c. Arbitrary Parameters and Functions: None (we will ignore

the "cosmologicali constant" A, which is known to be too small to be
measurable in the solar system).

d. Field Equations: The field equations are derived from an

invariant I.._égrangi_an action principle:
(5.1) O‘=v6‘Sv(vr-gR +1,) dx,

where R is the scalar curvature formed from the metric (see Misner,

Thorne and Wheeler [ 1972] for formulas), and where I.'I. is the inter-
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"~ action-Lagrangian, which incltides the mutual coupling of the gravitational

field with all matter and non-gravitational fields. I_I has the form
(5.2) LI'= I_I[ g'ij’ matter and non-gravitational field variables],

and in local inertial frames of gij’ has the standard special relativistic
form. Thus the thebry satisfies the postulates of a metric theory (see

Sect. 3), and hence,

oL

. R . 3 .v 1 I
(5.3) TlJ =0; TlJ =
weo T Bm/og OBy

By varying the Lagrangian in the usual way we obtain the field equations

- )
(5. 4) Ry -z g R =T,

where Ri is the Ricci Tensof. Equation (5;3) also follows directly

j

from the field equatio.ns .

e. The Post-Newtonian Limit: In this section all our discussions
of the post-Newtonian limits of metric théories of gravity are based
on the standafd teghniqu.eﬁs developed by Chandrase'kha'r (1965). We |
will use these techniques here to derive the post-Newtonian metric for
general relativity, and Ithereby obtain its PPN ﬁarameter values. Our
calculation can then be used as a prototype for obtaining the post;
Newtonian limit of nearly every metric theoi‘y of gravity (for an exception,
see Subsect. >5'8). Using the "bookkeeping" scheme developed in
Subsect. -4' 2, we solve thé field equations (5.4) for o0 to 0Of(4),
8,e tO O(3), and | 8ap to O(2) for a stre'ss-energy.terisc.n' given by

equation (4. 20). We first rewrite equation (5.4) in the form
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(5.5) R, = 8n(T, - +g,T) ,
where
(5. 6) T=g

We choose an asymptotically flat coordinate system which is at rest
relative